If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-55y^2+25y+50=0
a = -55; b = 25; c = +50;
Δ = b2-4ac
Δ = 252-4·(-55)·50
Δ = 11625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11625}=\sqrt{25*465}=\sqrt{25}*\sqrt{465}=5\sqrt{465}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{465}}{2*-55}=\frac{-25-5\sqrt{465}}{-110} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{465}}{2*-55}=\frac{-25+5\sqrt{465}}{-110} $
| 37=2+(g+8) | | 3x+7/5=0 | | 5f+44=99 | | 5g-56=34 | | -7u-41=2(u-7) | | 3m-45=66 | | 3(x+8)-5x=4 | | 2x+3x-12x=42 | | 3d-5=12 | | 5v+32=52 | | 5v+22=52 | | 1.025*(1+y)=1.065 | | 4c+5=19 | | Y=0.5x^2+0.2x+0.02 | | 4.8x=-1 | | 3c+28=8 | | X3+2x-12=12 | | m-80=20 | | 40+(x+30)+(x-10)+x=180 | | 6y+3/9=3 | | x=0.2*(40+0.125*x)+60+0.05*x | | 4x+2+8=2 | | 3x+6+6=0 | | 2x+8-2=0 | | (3x-4)/14-1=2x/28 | | x(20-3x)=0 | | 6(2y-5)-8=4(6y-1)-15y= | | 5(2y+3)-3=(4y-4)-14 | | 6(4x+1)=7x+11 | | 6x+6-8=5x-15 | | 4x=23=x-7 | | 96x+5=3x+20 |